3D NAND闪存“卷”到1000层 可靠性挑战凸显

栏目:行业资讯 来源:网站管理员 时间:2024-12-19 19:42 热度:1

来源:爱集微  时间:2024-12-19

芯片行业正努力在未来几年内将3D NAND闪存的堆栈高度提高至四倍,从200层增加到800层或更多,利用额外的容量将有助于满足对各种类型内存的无休止需求。

这些额外的层将带来新的可靠性问题和一系列增量可靠性挑战,但近十年来,NAND闪存行业一直在稳步增加堆栈高度。2015年,东芝宣布推出首个使用硅通孔的16芯片堆栈,这实现了更高的带宽、更低的延迟和更快的I/O,同时也为堆叠其他类型的内存和逻辑芯片铺平了道路。

“最初,NAND是水平扩展的,”Lam Research(泛林集团)蚀刻生产力和设备情报副总裁Tae Won Kim表示,“但10多年前,制造商意识到横向扩展本身并不具有成本效益,因此他们转向了垂直扩展。”

堆叠芯片为显著提高密度和加快数据访问速度打开了大门。ACM Research(盛美半导体)总经理Mohan Bhan表示:“3D NAND的发展方向是500到1000层,但实现这么多层并非仅仅靠做更多我们一直在做的事情就能实现。”

主要的传统工艺问题与高纵横比(HAR)蚀刻和沉积有关,以确保所有这些层中的字符串一致且无空隙。由于多晶硅通道的总电阻增加,通道高度也对读取电流构成挑战。因此,一些开发人员正在转向使用混合键合的双晶圆解决方案,但这些改进只能到此为止。

Brewer Science业务发展经理Daniel Soden表示:“虽然尖端制造商始终致力于增加层数,但层的额外扩展/堆叠受到蚀刻预算和图案化挑战等因素的限制。”

但是达到1000层的最快的方法也许是唯一的方法是串堆叠。

业界提出增加内存容量的方法

业界确实有办法在不增加更多层的情况下增加内存容量。泛林集团的Kim表示:“NAND制造商不仅可以垂直扩展,还可以横向和逻辑扩展。”

逻辑缩放增加了单个闪存单元中存储的位数,而横向缩放则减少了单元之间的间距。此外,研究人员正在尝试将列一分为二,使单元总数增加一倍。各种想法都在发挥作用,但效果将是降低间距并在相同区域存储更多数据。“缩放这种电荷陷阱架构的间距是提高设备上电容器密度的好方法,而无需进一步增加层数。”Brewer的Soden说。

另一个容量提升的方法涉及将更多数据装入单个单元在一个单元中存储多个位元并不是一个新想法。各公司正在推出每单元两位的多层单元(MLC)、三层单元(TLC)和四层单元(QLC)。开发人员现在正在接近每单元五层(五层单元或PLC)。管理如此微小的电荷状态差异(31个级别加上空)的算法可能会更复杂,纠错也是如此,因此性能可能会受到影响。

目前,PLC的实现方式以及陷阱氧化物的成分尚不明确,一些研究表明,浮栅可能成为更好的PLC单元。甚至有人在研究六层单元(HLC),每个单元存储六位。然而,这仍在研究中。

SK海力士有一种方法可以将存储单元分成两个三比特单元,总共六比特。七比特存储单元已经在低温下进行测试,以降低噪音并提高读取保真度。

保持均匀的层次

堆叠3D NAND的基本优势在于,只需一个光刻步骤即可获得数百层,从而对所有层进行图案化。缺点是钻孔变得更加困难,尤其是当高深宽比接近100:1时。

让每层变薄似乎有利于增加层数,而不会使堆栈太高。“层厚度在150到100埃的范围内。”Bhan说。但字线层变薄会使它们的电阻变大,从而损害性能。一些研究人员正在探索用电阻更低的钌或钼代替钨金属。但对于产品开发来说,层厚度目前保持不变。

挑战不仅仅在于蚀刻在保持良好平面度的同时添加额外的层更难。以前可以忽略的小错误现在累积起来,使得它们在更高的堆栈顶部变大而无法忽略。

堆栈最初由交替的SiO2和S3iN4层组成,但氮化物最终将被移除并替换为栅极金属。在每一代中,随着堆栈层数的增加,重点仍然是保持各层尽可能均匀。可以容忍轻微的错误,但随着堆栈层数的增加,这些错误往往会成倍增加,这意味着每一代都必须更加努力地提高平面度。

图1:3D NAND堆栈的平面性和均匀性较差。来源:盛美半导体

在沉积过程中旋转晶圆是盛美半导体用来提高平面度的一项技术。随着沉积的进行,该公司的设备会定期抬起晶圆并将其旋转180°,就像足球队每节改变方向一样。“沉积过程中对晶圆旋转的要求以及整个过程的均匀性将非常重要。”Bhan说。

上一篇: 美国国防部将中微公司及IDG资本移出制裁清单 下一篇: 美国要求英伟达调查其芯片如何流入中国